Dynamic cosine-Gauss plasmonic beam through phase control.
نویسندگان
چکیده
We carry out an approach to dynamic manipulation of a nondiffracting cosine-Gauss plasmonic beam (CGPB) illuminated with an incident phase modulation within nanostructures by a spatial light modulator (SLM). By changing the hologram addressed on the SLM, dynamic control on the lobe width and the propagating direction of the CGPB is experimentally verified. Finally, we demonstrate an application example of this dynamic CGPB in routing optical signals to multichannel subwavelength wave guides through numerical simulation.
منابع مشابه
Generation of two-dimensional plasmonic bottle beams.
By analogy to the three dimensional optical bottle beam, we introduce the plasmonic bottle beam: a two dimensional surface wave which features a lattice of plasmonic bottles, i.e. alternating regions of bright focii surrounded by low intensities. The two-dimensional bottle beam is created by the interference of a non-diffracting beam, a cosine-Gaussian beam, and a plane wave, thus giving rise t...
متن کاملSelf-imaging generation of plasmonic void arrays.
A plasmonic device is proposed to produce a self-imaging surface plasmon void array (2D surface bottle beam array) by the interference of two nondiffracting surface beams, namely, cosine-Gauss beams. The self-imaging surface voids are shown by full-wave calculations and then verified experimentally with an aperture-type near-field scanning optical microscope. We also demonstrate that the void a...
متن کاملDynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam.
Dynamic generation of plasmonic Moiré fringes using a phase engineered optical vortex (OV) beam is experimentally demonstrated. Owing to the unique helical phase carried by an OV beam, the initial phase of surface plasmon polaritons (SPPs) emanating from a metallic grating can be adjusted dynamically by changing the phase hologram displayed on a spatial light modulator. Plasmonic Moiré fringes ...
متن کاملCosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave.
A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consis...
متن کاملNonlinear Beam Shaping with Plasmonic Metasurfaces
We present here a method for generating second-harmonic beams with tailored beam profiles using nonlinear metasurfaces based on split ring resonators. By manipulating both the phase and the amplitude of the quadratic nonlinear coefficient locally, at the single inclusion level, the emitted secondharmonic wavefront is perfectly controlled. These concepts are demonstrated experimentally by the fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2014